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Abstract

We show that Lagrange interpolants at the Chebyshev zeros yield best relative polynomial
approximations of (1 + (ax)*)™" on [—1, 1], and more generally of

/°° du(a)
o 1+ (ax)¥

where p is a suitably restricted measure. We use this to study relative approximation of

(14+x2)"" on an increasing sequence of intervals, and Lagrange interpolation of |x|’.
Moreover, we show how it gives a simple proof of identities for some trigonometric sums.
© 2003 Published by Elsevier Inc.
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1. Results

While looking for relative approximations to (1 + xz)f1 on a growing sequence of
intervals, the author noticed the following simple (new?) result on explicit best
relative approximation. Throughout this paper, L,[f] denotes the Lagrange
interpolation polynomial to the function f at the zeros of T, the Chebyshev
polynomial of degree m.
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Proposition 1. Let m be an even positive integer, U be an even real polynomial of
degree <m, and let a>0. Let

fulx) = (14 (ax)))",  xe[-1,1].
Then L,,[Uf,] is a polynomial of degree <m — 2 and
L[ faUl/fa = Ull, 10 =inf{[[P/fa = UllL, -1 : deg(P)<m — 1}
=|U(i/a)/Tn(i/a)|. (1)
Moreover, for all x,

L[ fuU)(¥) [fulx) = U(x) = (=) T, (x) U(i/a) /| T, i/ a). (2)

From this, with U(x) =1, one can readily derive a result on relative
approximation of (1 —|—x2)71 on a growing sequence of intervals, with a lower
bound on the circle centre 0, radius 1. The author needed the latter in studying

eigenvalues of Hankel matrices:

Corollary 2. Let (ay),._, be an increasing sequence of positive numbers with limit oo.
There exist polynomials S of degree <m — 1, m=1, with

lim sup (1 + xz)Sm(x) - 1||Lm[—am,am] <1 (3)
iff

lim inf m/ay,>0. (4)

m— o0

Moreover, assuming this last condition, there exists C>0 and polynomials S,, of
degree <m satisfying (3) and for |z| = 1,

[Sm(2)] = C. (5)

We can also readily derive closed-form expressions for some trigonometric sums:
the second one below sometimes appears in number theoretic contexts.

Corollary 3. Let n>=1 and a>0. Then
(=) sin(j-HE 2n(—1
=7 1+ (acos(j —%)%)2 02|T2n(

) 6
oy ©

In particular,

zn:(—l)jtan(j—%)%:(—l)"n. (7)

=

One of the features of Theorem 1 is that the alternation points are independent of
a in f,. Thus we may integrate with respect to a, the main idea of this paper:
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Theorem 4. Let u be a non-negative Borel measure on [0, o0) satisfying

0</00O d'u(a)<oo. (8)

1 + a2

Let U be an even real polynomial of degree <m, with no zeros on the imaginary axis,
except possibly at 0. Let

F@zvmlﬁﬁﬁl rel-1,1\{0} )

1+ (ax)”
and
w00 =1/ [ | vl o) (10)

Then L,,[F] is a polynomial of degree <m — 2 and
(LnlF] = Fyll, oy =1 = inf{I(P — Fywll, _yy : deg(P)<m—1}. (1)

Here we interpret w(0) as its limit 0 and (Fw)(0) as its limit 1 if u has infinite mass on
[0, 00) and U(0)#0. In all other cases, we interpret F(0) and w(0) as their limiting
values at 0.

We note that one can relax the positivity of the measure p and the restrictions on U.
All one really needs is that g and U are such that w is finite and non-zero, except possibly
at 0. Perhaps initially, this theorem appears artificial—but the ideas of its proof can be
used to easily study asymptotics of errors of Lagrange interpolation to the functions

ga(x) = [x]". (12)

Corollary 5. Let y>0 and not be an even integer. Let 2/ be the largest even integer <7y

and
il 1=~ 1
A, =
! /0 cosh(y y// 1+y
2277 ym 1 ;
- mn%‘r()})Z(]—kz) (-1)”. (13)
J=0
(a) Then
Tim (20)' [l Laulgy 2)(6) — 7L, 1) = 4 (14)

Moreover, if (£,,) is any increasing sequence of positive numbers with limit oo, we

have uniformly for |x|e [2;;, 1] as n— oo,

(2n)" {x* Lanlgy—2) (x) = [x["} = (= 1) Tou(x)(4, + o(1)). (15)

® lim 20)||Laalg)(x) = Xl g = lim 20 |Laag)(0)] = 4, (16)
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For y =1, 4, = 1. Thus, the polynomials x2L,, [9,-2](x) fare worse than the best
polynomial approximations of degree n that give the Bernstein constant 0.28016....
[5, p. 7491f; 6, p. 4]. This is not surprising, as the best polynomial approximations to
|x| have positive constant coefficients [2, p. 79, no. 27]. What is interesting, however,
is that x?Ly,[g,-2](x) — |x|" has 2n — O(1) points of “almost” alternation as n— oo.
This suggests that 4, might be the analogue of the Bernstein constant when we best
approximate |x|” by polynomials that vanish at 0.

After the results of this paper were obtained, the interesting paper of Ganzburg [3]
appeared. There representations and asymptotics are obtained for errors in Lagrange
interpolation that are similar to, but not the same, as some in this paper. In
particular, limit (16) is given there, as well as a representation for the error in
interpolation of (1 — x)“ that is similar in spirit to ours for |x|". However, the main
idea of this paper seems to be entirely new—namely, that integrating in Theorem 4
and Corollary 5 with respect to a positive measure du(a) allows easy analysis for a
fair range of functions.

2. Proofs
We begin with

Proof of Proposition 1. Since f,, U and T, are even, so is the unique Lagrange
interpolation polynomial L,[f,U]. The latter has degree <m — 1, so has degree
<m — 2. But then

Lm[ftl U]/fa -U

is a polynomial of degree <m, and has zeros at the zeros of T, so for some
constant c,

LalfuUl/fu = U = ¢T.
To determine ¢, we evaluate this last identity at i/a:
—U(i/a) = cTy(i/a) = c = =U(i/a)/Tn(i/a).
Next, recall that if ¢(z) = z + V22 — 1,z¢[~1, 1], then
Tin(z) = 3((2)" + $(2) ™),

_1\m/2
T(ifa) =) <F+ 1

SO

m

1 1
—+y/1+—
a a

+
a

)

= (=1)"2|Tn(i/a). (17)

Now (2) follows. The best approximation property (1) follows from (2), and the
equioscillation theorem applied to weighted approximation [1, p. 52]. Indeed,
L,[f.U]l/f. — U = cT,, equioscillates m + 1 times in [—1,1]. O
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Proof of Corollary 2. By the substitution
Sp(x) = Pp(a,'x), m=1,

m

we see that the existence of polynomials satisfying (3) reduces to the existence of
polynomials P,, of degree <m, with

limsup [Py (x)/fa, (x) — lHLZ[—l,l] <l
m— oo

Proposition 1 with U = 1 shows that the error in relative approximation of f;, is the
same for polynomials of degree <m — 1 or m — 2 if m is even. Thus, from (1), (P,,)

exists iff
T, <L> ‘ >1.
am

s+s")>1 for se(l, ),

lim inf
m-— o0

In turn since

(17) shows that this reduces to

m

1 1
am a

lim inf

m-— oo

m

and hence (4). If (4) is true, we can use S, (x) = L[ f,,](x/ay). From (2), we see that

1
for |z| = 3

(14 2%)Su(z) = 1] =

Tn(z/am) < Tn(i/ (2a))
Ty (i/am) = Tm(i/am) '

Now let us denote the zeros of T, by xj,, | <j<m, and recall that sin5 is the
positive zero closest to 0. Since the zeros of T, are symmetric about 0, we see that

T,(i/(2a Ly (apxin)®\ L+ (@ sin £
. ) e
in view of the fact that a,,/m is bounded above. So for |z| =1,

(14 23)S,,(2)|=1 - C; >0,
and (5) follows. O

Xjm >0

Proof of Corollary 3. Let m be even and as above,

. I\=m .
Xjm = COS| {J =5 )] I<j<m,

denote the zeros of Tj,. The standard formulas for Lagrange interpolation applied to
f of Theorem 1 and to the constant 1 give

fa xjm m )
m fa Z T

X jm - X /m)
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Then (2) with U =1 gives

(=D L[ (0) /fulx m
| Tn(i/a)] B Tn(x) Z T

2 T o e krea]

22 - (x + Xjm)

j=1 m(x]m) (1 + (axjm)2) .

Since the left-hand side is constant, the term involving x on the right-hand side
vanishes. Moreover, 7, is odd as T, is even, so we see that

e . _ 5 Xjm
VTGl =26 ) S )

Xjm

Since
1 'm
T,,(Xjm) = ()72»
1=,

we obtain on writing m = 2n,

-1
)’ 1 —x?

(=)' | T :%; =

1+ (ax,m)2

Then (6) follows using a little manipulation. If we let a— co in the above identity, we
obtain (7). O

Proof of Theorem 4. If we multiply (2) by £, and then integrate with respect to du(a),
we obtain

w .
Lm[F](X) _ F(.x) — (_1)l+m/2Tm(x)/ U(l/a) d:u(a) . (18)
o |Tw(i/a)| 1 + (ax)?]
Since L,[f,] has degree <m —2, so does L,,[F]. Next, as U is even and has real
coefficients, U(i/a) is real valued for a>0. Moreover, as U has no zeros on the
imaginary axis, except possibly at 0, U(i/a) is of one sign for a>0, that is, has the
same sign as U(i). Hence,

(LlF] = F)yw = (=1)"""?sign(U(i)) Ty,

where w is given by (10). Now we consider three cases:

(1) u has finite total mass: Then we see from (9) and (10) that F(0) may be defined
by (9) and that F is continuous in [—1, 1], while w is positive and continuous in
[-1,1]. Hence we may apply the standard alternation theorem for weighted
approximation [1, p. 52] to obtain (11).
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(I1) p has infinite total mass but U(0) = 0: Let B>0. We write

LW [P i) (7 @) dul)

Here

B
x2/ / du(a x—0.
0 1+ ax

Moreover,

[ a7t
B 14 (ax)* @ B @
From (8), we see that for large B this last right-hand side is small. Since

U(x)/x*— U"(0)/2 as x—0, we obtain
lim F(x) =0.
x=0

Since U(i/a) = O(a™?) and |T,,(i/a)|—1 as a— oo, we also see that

/ / OC ||;; z//i u(a) = w(0),

a finite positive value. Again we can apply the usual alternation theorem [1, p. 52].
(II1) p has infinite total mass and U(0)+#0: In this case,
lim w(x) =0; lim F(x)= o0.
x—0 x—0

The fact that w vanishes at 0 prevents us from applying the usual alternation
theorem. However, for x#0,

Ulx) 1 :/“‘ |U(i/a)| du(a) /"o du(a)
[UOFx)w(x)  Jo  [UO)Tw(i/a)l [1 + (ax)’]/ Jo  [1 + (ax)’]

7/0 (el ))[1+(ax)2]//() 1+ (ax)?]

B /L) *  du(a)

_1+/0 ( )[1+(ax)2]//0 1+ (ax)?]
where ¢(a) >0 as a— oo. Fix B>0. We see that

B
/0 le(a 1+ ax / 1+ ax
< a)ldu(a // -0, x-—0.
0 1+ ax
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Moreover,

/: (@)l duax // <Sup{|()\ a> B},

It follows that
)lciir})(Fw)(x) =sign(U(0)) =: (Fw)(0).

Then for any polynomial P, we see that Pw vanishes at 0, so

(P = F)wlly, (102 [Fw](0) = 1

and (11) persists. [
In the proof of Corollary 5, we need
Lemma. Let r>0 and

o0 afrfl
Pl = [ T

Then as m— oo,
0 yrfl
=m’ ————dy(1 1)).
pulr) =™ [ sy +0(1)

Proof. We split

3 m3/4 0 —r—1
/2 / / “ — L +DL+1
m\I') = + + T (0N
P ( ) 0 % m3/4 |Tm( /Cl)| : ? >

To handle I;, we use the lower bound
| Tn(ifa)| =27 a™"

which follows readily from (17). So, for large enough m,

§ m
L2l /2 a7V da = 0<<§> )
) 4

Next, in I3, we use the asymptotic

T (ifa)| = cosh(*+ 0(5)).

113

(19)

which holds uniformly for m>1 and ae]l, «), and follows easily from (17).

Thus

[oe) afrfl
b= /mm cosh(z 1 o(z)) “
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dy

- Coshyw(m))

PR R
[ Cmmﬁdu+wa»

by the substitution y = m/a. Finally,

1 1 «©
Lh<——— T lda< T lda.
’ HMUW“Wé ¢ “cmmw“+ow1m)é “

The estimates above give (19). O

Proof of Corollary 5. (a) Let 2/ be the least even integer <y and A =y —2/€(0,2).

We use U(x) = x* and
du(a) = al*Ada/Co, ae (0, o),

where
w A1 ©  L1-A
cm:/ J’zdy‘/ X
0 1+y 0 1+X

Since A€ (0,2), (8) is valid. Then F given by (9) has
0 1-A
F(x :x%/ a—da Co
(x) Tt (@) /
voteant [ Y8 72
=P [ = i = g

so (18) implies for positive even m,

. 1 g\ =2 —A
Llgoa](x) — L2 1) Lem/24+/ / da/C
9,-2)() — ¥ = (- T @ T
0 1 1=y
:( 1 1+m/2+/T / a - da/Co.
o 1+ (ax Tn(i/a)l

So
X Linlgy—2)(x) — x| = (= 1) T () Win(x),

where

_[” (ax)z a'” a
VVm(x) - /0 1+ (ax)Z |Tm(l/a)| “ /CO

We see that

0 aflfw'
’mmgl]TWWmmprWQ

(1)
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and hence, applying the lemma,

(| Lin[gy-2] (x) = Xl ., (-1 < 170, (1) / Co

s y—1
<(1+o(1))/0 mdy/co:(wo(l))/lw

with the notation (13). In the other direction, since

(ax)* o 1 1
1+ (ax)* : 1+ (ax)2>1 (ax)*
we also obtain
Win(x) 2 0 (2)/ Co = Py +2)/(Cox®) = m™7 (4, + o(1)), (22)

by the lemma, uniformly for |x|e [%, 1}, if only (&,,) is a sequence increasing to co.

Hence uniformly for such x,

M Linlg,2)(x) =[x} = (=) T, (x)m p,, (7)) Co(1 + 0(1))
= (=) T (x) 4, (1 + o(1)).
The second form of A4, in (13) follows from [4, (3.241.2), p. 292] and [4, (3.523.3),

p. 348].
(b) Replacing y by y + 2 in (20), we see that for positive even m,

Ly[gy)(x) — x|" = (_1)1+m/2+/+1Tm(x) Vin(x),

where now

w0 1 a7
Vm(x) = /0 1+ (ax)2 |Tm(l/a)| da/co

0 a—l—y
< /0 mda/co = pw(1)/ Co,

with equality iff x = 0. Applying the lemma gives the result. [J
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